Bibliografia

Articoli e libri consultati per i vari capitoli

Nel seguito sono elencati alcuni articoli scientifici e libri consultati per la versione 2021 del libro “Astrobiologia”. In buona parte si tratta di articoli specialistici non adatti per il pubblico, in riviste che sono accessibili dalle biblioteche universitarie in forma cartacea o digitale o su abbonamento. Alcune sono tuttavia rilasciate in maniera “aperta”, e sono raggiungibili col link indicato alla fine di ogni voce dell’elenco. La scritta Web al posto del nome dell’autore indica che si tratta di una recensione a cui non corrisponde una pubblicazione. Ogni voce indica: Nome degli autori, anno di pubblicazione, titolo, rivista o volume con numero volume e pagina, editore, collegamento DOI (Digital Object Identifier).

In generale, si è fatto riferimento al libro: G. Galletta, V., Sergi, 2005, Astrobiologia: le frontiere della vita, Hoepli,

Capitolo 1

  • N. Abbagnano, 2006, Il pensiero greco e cristiano: dai Presocratici alla scuola di Chartres, Storia della Filosofia Voll. 1 e 2 , De Agostini per il Gruppo Editoriale l’Espresso,
  • P. Hadot, 1981, La fine del paganesimo in: L’impero romano e l’Oriente, Storia delle religioni Vol. 4 a cura di Henri-Charles Puech, Ed. Universale Laterza,
  • B. Farrington, 1964, Storia della scienza greca, traduz. di G. Gnoli, Arnoldo Mondatori Editore

Capitolo 2

  • E. Pennisi, 2019, Algae suggest eukaryotes get many gifts of bacteria DNA, Science 363, 439, https://doi.org/10.1126/science.363.6426.439-b
  • Y.M. Bar-Ona et al., 2018, The biomass distribution on Earth, Proceedings of the National Academy of Sciences 115, 6506–6511, https://doi.org/10.1073/pnas.1711842115
  • V.M. Kolb, 2007, On the applicability of the Aristotelian principles to the definition of life, International Journal of Astrobiology, 6,51–57, Cambridge University Press, https://doi.org/10.1017/S1473550407003564
  • M. Rizzotti (eds.) et al., 1996, Defining Life, Padova University Press
  • A. B., Bray et al., 1992, Biologia molecolare della cellula, Zanichelli

Capitolo 3

  • T. Sit, M. Ness, 2020, The age distribution of stars in the Milky Way bulge, Astrophysical Journal 900, 4, https://doi.org/10.3847/1538-4357/ab9ff6
  • R. Saladino et al., 2015, Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation, Proceedings of the National Academy of Sciences 112, 2746, https://doi.org/10.1073/pnas.1422225112
  • P. Ehrenfreund, J. Cami, 2010, Cosmic Carbon Chemistry: From the Interstellar Medium to the Early Earth, Perspective in Biology, Cold Spring Harbor Laboratory Press, https://10.1101/cshperspect.a002097
  • P. Ehrenfreund, P., M.A. Sephtonb, 2006, Carbon molecules in space: from astrochemistry to astrobiology, Journal of the Royal Society of Chemistry, 133, 277, https://doi.org/10.1039/B517676J
  • M. Salaris, A. Weiss, 2002, Homogeneous age dating of 55 Galactic globular clusters. Clues to the Galaxy formation mechanisms, Astronomy and Astrophysics, 338, 492, EDP Science, https://doi.org/10.1051/0004-6361:20020554
  • H.J. Fraser et al. , 2002, Astrochemistry : The molecular universe, Astronomy and Geophysics 43, 2. 10, Oxford Academics, https://doi.org/10.1046/j.1468-4004.2002.43210.x
  • K. Omukai, 2000, Protostellar Collapse with Various Metallicities, Astrophysical Journal 534, 809, AAS, https://doi.org/10.1086/308776

Capitolo 4

  • P. R. Heck et al., 2020, Lifetimes of interstellar dust from presolar silicon carbide cosmic-ray exposure ages, Proceedings of the National Academy of Sciences 117, 1884, https://doi.org/10.1073/pnas.1904573117
  • Y. Oba et al., 2019, Nucleobase synthesis in interstellar ices, Nature Communication, 10 , 4413, https://doi.org/10.1038/s41467-019-12404-1
  • C. E. Terquem, 2005, Migration des planètes, Formation planétaire et exoplanètes, Ed. Halbwachs, Egret, Hameury, p.132, Ecole CNRS de Goutelas XXVIII, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.125.4155
  • F.Selsis, 2005, Evaporation planètaire, Formation planétaire et exoplanètes, Ed. Halbwachs, Egret, Hameury, p.272, Ecole CNRS de Goutelas XXVIII, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.125.4155

Capitolo 5

  • C. Potiszil et al., 2020, The Albedo of Ryugu: Evidence for a High Organic Abundance, as Inferred from the Hayabusa2 Touchdown Maneuver, Astrobiology, 20, 916, Mary Ann Liebert, Inc., https://doi.org/10.1089/ast.2019.2198
  • R.Saladino et al., 2015, Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation, Proceedings of the National Academy of Sciences 112, E2746, https://doi.org/10.1073/pnas.1422225112
  • E. Nakamuraa et al., 2012, Space environment of an asteroid preserved on micrograins returned by the Hayabusa spacecraft, Proceedings of the National Academy of Sciences 109, E624, www.pnas.org/cgi/doi/10.1073/pnas.111623610

Capitolo 6

  • G.Micca Longo, S. Longo, 2020, The role of primordial atmosphere composition in organic matter delivery to early Earth, Rendiconti Lincei. Scienze Fisiche e Naturali, 31, 53, Springer, https://doi.org/10.1007/s12210-020-00878-x
  • Y. Morono et al., 2020, Aerobic microbial life persists in oxic marine sediment as old as 101.5 million years, Nature Communications 11, 3626, https://doi.org/10.1038/s41467-020-17330-1
  • G. Micca Longo et al., 2018, Evaluation of CaSO4 micrograins in the context of organic matter delivery: thermochemistry and atmospheric entry, International Journal of Astrobiology, 1, Cambridge University Press, https://doi.org/10.1017/S1473550418000204
  • T. Tashiro et al., 2017, Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada, Nature 549, 516, https://doi.org/10.1038/nature24019

Capitolo 7

  • M. Marshall, 2013, Mystery bug found in Antarctica’s Lake Vostok, New Scientist, https://www.newscientist.com/article/dn23253-mystery-bug-found-in-antarcticas-lake-vostok/
  • A. M. Achberger, 2011, Expression and partial characterization of an ice-binding protein from a bacterium isolated at a depth of 3,519m in the Vostok ice core, Antarctica, Frontiers in Microbiology, https://doi.org/10.3389/fmicb.2011.00255

Capitolo 8

  • M. Nazari-Sharabian et al., 2020, Water on Mars—A Literature Review, Galaxies 8, 40, MDPI, https://doi.org/10.3390/galaxies8020040
  • G. V. Levin, P. A. Straat, 2016, The Case for Extant Life on Mars and Its Possible Detection by the Viking Labeled Release Experiment, Astrobiology, 16, 798, Mary Ann Liebert, Inc., https://doi.org/10.1089/ast.2015.1464
  • S. K. Atreya, 2009, The Mystery of Methane on Mars and Titan, Scientific American, https://www.scientificamerican.com/article/methane-on-mars-titan/
  • R. Greenberg, 2002, Tides and the Biosphere of Europa, American Scientist, 90, 48, Sigma Xi, https://www.researchgate.net/publication/234530975_Tides_and_the_Biosphere_of_Europa

Capitolo 9

  • S.V. Jeffers et al., 2020, A multiplanet system of super-Earths orbiting the brightest red dwarf star GJ 887, Science 368, 1477, https://doi.org/10.1126/science.aaz0795
  • J. T. O’Malley-James, L. Kaltenegger, 2019, Biofluorescent Worlds – II. Biological fluorescence induced by stellar UV flares, a new temporal biosignature, Monthly Notices of the Royal Astronomical Society , 488, 4530, Oxford Academics, https://doi.org/10.1093/mnras/stz1842
  • S. DasSarma, E. W. Schwieterman, 2018, Early evolution of purple retinal pigments on Earth and implications for exoplanet biosignatures, International Journal of Astrobiology 1, Cambridge University Press, https://doi.org/10.1017/S1473550418000423
  • I. J. M. Crossfield, 2015, Observations of Exoplanet Atmospheres, Publications of the Astronomical Society of the Pacific, 127, 941, https://doi.org/10.1086/683115
  • M. Perryman, 2014, Resource Letter Exo-1: Exoplanets, American Journal of Physics 82, 552, https://doi.org/10.1119/1.4830455
  • N. Kiang et al., 2007, Spectral Signatures of Photosynthesis. I. Review of Earth Organisms, Astrobiology 7, 222, Mary Ann Liebert, Inc., https://doi.org/10.1089/ast.2006.0105
  • N. Kiang et al., 2007, Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds, Astrobiology 7, 252, Mary Ann Liebert, Inc., https://doi.org/10.1089/ast.2006.0108

Capitolo 10

  • W.A. da Silveira et al., 2020, Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact, Cell 183, 1185–1201, Elsevier Inc., https://doi.org/10.1016/j.cell.2020.11.002
  • Ott et al. , 2020, Molecular repertoire of Deinococcus radiodurans after 1 year of exposure outside the International Space Station within the Tanpopo mission, Microbiome 8:150, https://doi.org/10.1186/s40168-020-00927-5
  • Web, 2020, The Human Body in Space, NASA, https://www.nasa.gov/hrp/bodyinspace
  • J. G. Steller et al., 2018, Oxidative Stress as Cause, Consequence, or Biomarker of Altered Female Reproduction and Development in the Space Environment, International Journal of Molecular Sciences 19, 3729, MDPI, https://doi.org/10.3390/ijms19123729
  • T. J. Goodwin, M. Christofidou-Solomidou, 2018, Oxidative Stress and Space Biology: An Organ-Based Approach, International Journal of Molecular Sciences 19, 959, MDPI, https://doi.org/10.3390/ijms19040959
  • H. Higashiyama, M. Blaxter, 2017, Tardigrades in Space, The Biologist 64, 14, Royal Society of Biology,
  • M. Buonanno et al. , 2017, Germicidal Efficacy and Mammalian Skin Safety of 222-nm UV Light, Radiative Research , 187, 483, Allen Press, Https://doi.org/10.1667/RR0010CC.1.
  • Web, 2013, The human body in space_ Distinguishing fact from fiction , Science in the News, Harvard University, http://sitn.hms.harvard.edu/flash/2013/space-human-body/
  • K. Ingemar Jönsson et al. , 2008, Tardigrades survive exposure to space in low Earth orbit, Current Biology, 18, Issue 17, Elsevier Inc., https://doi.org/10.1016/j.cub.2008.06.048

Capitolo 11

  • A. E. Snyder-Beattie,, 2021, The Timing of Evolutionary Transitions Suggests Intelligent Life Is Rare, Astrobiology, 21, 1, Mary Ann Liebert, Inc., DOI: 10.1089/ast.2019.2149
  • M. Heide et al., 2020, Human-specific ARHGAP11B increases size and folding of primate neocortex in the fetal marmoset, Science 369, 546–550, https://doi.org/10.1126/science.abb2401
  • Web, 2018, Tre geni per il grande cervello umano, Le Scienze, https://www.lescienze.it/news/2018/06/01/news/geni_aumento_dimensioni_cervello_umano-4004007/
  • Fiddes et al., 2018, Human-Specific NOTCH2NL Genes Expand Cortical Neurogenesis through Delta/Notch Regulation, Cell 173, 1356–1369 , Elsevier Inc., https://doi.org/10.1016/j.cell.2018.03.051
  • N. Wolchover, 2012, Why It Took So Long to Invent the Wheel, Scientific American, Springer, https://www.scientificamerican.com/article/why-it-took-so-long-to-inv/

Utilizzando il sito, accetti l'utilizzo dei cookie da parte nostra. maggiori informazioni

Questo sito utilizza i cookie per fornire la migliore esperienza di navigazione possibile. Continuando a utilizzare questo sito senza modificare le impostazioni dei cookie o cliccando su "Accetta" permetti il loro utilizzo.

Chiudi